參數(shù)資料
型號(hào): AT32UC3L016-ZAUR
廠商: Atmel
文件頁數(shù): 75/174頁
文件大?。?/td> 0K
描述: IC MCU AVR32 16K FLASH 48VQFN
產(chǎn)品培訓(xùn)模塊: AVR® UC3 Introduction
標(biāo)準(zhǔn)包裝: 1
系列: AVR®32 UC3 L
核心處理器: AVR
芯體尺寸: 32-位
速度: 50MHz
連通性: I²C,SPI,UART/USART
外圍設(shè)備: 欠壓檢測/復(fù)位,DMA,POR,PWM,WDT
輸入/輸出數(shù): 36
程序存儲(chǔ)器容量: 16KB(16K x 8)
程序存儲(chǔ)器類型: 閃存
RAM 容量: 8K x 8
電壓 - 電源 (Vcc/Vdd): 1.62 V ~ 3.6 V
數(shù)據(jù)轉(zhuǎn)換器: A/D 9x12b
振蕩器型: 內(nèi)部
工作溫度: -40°C ~ 85°C
封裝/外殼: 48-VFQFN 裸露焊盤
包裝: 剪切帶 (CT)
其它名稱: AT32UC3L016-ZAURCT
28
32099I–01/2012
AT32UC3L016/32/64
relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384
bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset),
not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up
appropriately. The same mechanisms are used to service all different types of events, including
interrupt requests, yielding a uniform event handling scheme.
An interrupt controller does the priority handling of the interrupts and provides the autovector off-
set to the CPU.
4.5.1
System Stack Issues
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.
The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.
4.5.2
Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:
1.
The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.
2.
When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.
3.
The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 4-4 on
page 31, is loaded into the Program Counter.
The execution of the event handler routine then continues from the effective address calculated.
The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.
相關(guān)PDF資料
PDF描述
ATMEGA88-15MZ MCU AVR 8K FLASH 15MHZ 32-QFN
ATMEGA168P-20MQR MCU AVR 16K FLASH 20MHZ 32-QFN
ATMEGA164A-MCHR IC MCU AVR 16K 20MHZ 44QFN
SC16C2550BIBS,151 IC UART DUAL W/FIFO 32-HVQFN
SC16C752BIBS,151 IC UART DUAL W/FIFO 32-HVQFN
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AT32UC3L016-ZAUT 功能描述:32位微控制器 - MCU UC3L-16KB Flash RoHS:否 制造商:Texas Instruments 核心:C28x 處理器系列:TMS320F28x 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:90 MHz 程序存儲(chǔ)器大小:64 KB 數(shù)據(jù) RAM 大小:26 KB 片上 ADC:Yes 工作電源電壓:2.97 V to 3.63 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:LQFP-80 安裝風(fēng)格:SMD/SMT
AT32UC3L0256-AUR 功能描述:32位微控制器 - MCU UC3L-256KB FL 85C RoHS:否 制造商:Texas Instruments 核心:C28x 處理器系列:TMS320F28x 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:90 MHz 程序存儲(chǔ)器大小:64 KB 數(shù)據(jù) RAM 大小:26 KB 片上 ADC:Yes 工作電源電壓:2.97 V to 3.63 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:LQFP-80 安裝風(fēng)格:SMD/SMT
AT32UC3L0256-AUT 功能描述:32位微控制器 - MCU UC3L-256KB FL 85C RoHS:否 制造商:Texas Instruments 核心:C28x 處理器系列:TMS320F28x 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:90 MHz 程序存儲(chǔ)器大小:64 KB 數(shù)據(jù) RAM 大小:26 KB 片上 ADC:Yes 工作電源電壓:2.97 V to 3.63 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:LQFP-80 安裝風(fēng)格:SMD/SMT
AT32UC3L0256-D3HR 功能描述:32位微控制器 - MCU UC3L-256KB FL 85C RoHS:否 制造商:Texas Instruments 核心:C28x 處理器系列:TMS320F28x 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:90 MHz 程序存儲(chǔ)器大小:64 KB 數(shù)據(jù) RAM 大小:26 KB 片上 ADC:Yes 工作電源電壓:2.97 V to 3.63 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:LQFP-80 安裝風(fēng)格:SMD/SMT
AT32UC3L0256-D3HT 功能描述:32位微控制器 - MCU UC3L-256KB FL 85C RoHS:否 制造商:Texas Instruments 核心:C28x 處理器系列:TMS320F28x 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:90 MHz 程序存儲(chǔ)器大小:64 KB 數(shù)據(jù) RAM 大小:26 KB 片上 ADC:Yes 工作電源電壓:2.97 V to 3.63 V 工作溫度范圍:- 40 C to + 105 C 封裝 / 箱體:LQFP-80 安裝風(fēng)格:SMD/SMT