Revision 17 1-3 Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performa" />
參數(shù)資料
型號: AGLN020V2-UCG81
廠商: Microsemi SoC
文件頁數(shù): 140/150頁
文件大?。?/td> 0K
描述: IC FPGA NANO 1KB 20K 81-UCSP
標準包裝: 490
系列: IGLOO nano
邏輯元件/單元數(shù): 520
輸入/輸出數(shù): 52
門數(shù): 20000
電源電壓: 1.14 V ~ 1.575 V
安裝類型: 表面貼裝
工作溫度: -20°C ~ 70°C
封裝/外殼: 81-WFBGA,CSBGA
供應商設備封裝: 81-UCSP(4x4)
IGLOO nano Low Power Flash FPGAs
Revision 17
1-3
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike
SRAM-based FPGAs, flash-based IGLOO nano devices allow all functionality to be Instant On; no
external boot PROM is required. On-board security mechanisms prevent access to all the programming
information and enable secure remote updates of the FPGA logic.
Designers can perform secure remote in-system reprogramming to support future design iterations and
field upgrades with confidence that valuable intellectual property cannot be compromised or copied.
Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO nano device
architecture mitigates the need for ASIC migration at higher user volumes. This makes IGLOO nano
devices cost-effective ASIC replacement solutions, especially for applications in the consumer,
networking/communications, computing, and avionics markets.
With a variety of devices under $1, IGLOO nano FPGAs enable cost-effective implementation of
programmable logic and quick time to market.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of IGLOO nano flash-based
FPGAs. Once it is programmed, the flash cell configuration element of IGLOO nano FPGAs cannot be
altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in
the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and
correction (EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The IGLOO nano device offers many benefits, including nonvolatility and reprogrammability, through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization
without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
IGLOO nano FPGAs utilize design and process techniques to minimize power consumption in all modes
of operation.
Advanced Architecture
The proprietary IGLOO nano architecture provides granularity comparable to standard-cell ASICs. The
IGLOO nano device consists of five distinct and programmable architectural features (Figure 1-3 on
Flash*Freeze technology
FPGA VersaTiles
Dedicated FlashROM
Dedicated SRAM/FIFO memory
Extensive CCCs and PLLs
Advanced I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the IGLOO nano core tile as either a three-input lookup table (LUT)
equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile
capability is unique to the ProASIC family of third-generation-architecture flash FPGAs. VersaTiles are
connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the
device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is
possible for virtually any design.
The AGLN030 and smaller devices do not support PLL or SRAM.
相關PDF資料
PDF描述
A3PN030-ZQNG68I IC FPGA NANO 30K GATES 68-QFN
AGL015V2-QNG68 IC FPGA 1KB FLASH 15K 68-QFN
A3PN015-2QNG68I IC FPGA NANO 15K GATES 68-QFN
A3PN020-1QNG68I IC FPGA NANO 20K GATES 68-QFN
A3PN030-ZQNG48I IC FPGA NANO 30K GATES 48-QFN
相關代理商/技術參數(shù)
參數(shù)描述
AGLN020V2-UCG81I 功能描述:IC FPGA NANO 1KB 20K 81-UCSP RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOO nano 標準包裝:152 系列:IGLOO PLUS LAB/CLB數(shù):- 邏輯元件/單元數(shù):792 RAM 位總計:- 輸入/輸出數(shù):120 門數(shù):30000 電源電壓:1.14 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 85°C 封裝/外殼:289-TFBGA,CSBGA 供應商設備封裝:289-CSP(14x14)
AGLN020V5-CSG81 功能描述:IC FPGA 20K 1.5V CSP81 RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOO nano 標準包裝:60 系列:XP LAB/CLB數(shù):- 邏輯元件/單元數(shù):10000 RAM 位總計:221184 輸入/輸出數(shù):244 門數(shù):- 電源電壓:1.71 V ~ 3.465 V 安裝類型:表面貼裝 工作溫度:0°C ~ 85°C 封裝/外殼:388-BBGA 供應商設備封裝:388-FPBGA(23x23) 其它名稱:220-1241
AGLN020V5-CSG81I 功能描述:IC FPGA NANO 1KB 20K 81-CSP RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOO nano 標準包裝:152 系列:IGLOO PLUS LAB/CLB數(shù):- 邏輯元件/單元數(shù):792 RAM 位總計:- 輸入/輸出數(shù):120 門數(shù):30000 電源電壓:1.14 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 85°C 封裝/外殼:289-TFBGA,CSBGA 供應商設備封裝:289-CSP(14x14)
AGLN020V5-QNG68 功能描述:IC FPGA 20K 1.5V 68QFN RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOO nano 標準包裝:24 系列:ECP2 LAB/CLB數(shù):1500 邏輯元件/單元數(shù):12000 RAM 位總計:226304 輸入/輸出數(shù):131 門數(shù):- 電源電壓:1.14 V ~ 1.26 V 安裝類型:表面貼裝 工作溫度:0°C ~ 85°C 封裝/外殼:208-BFQFP 供應商設備封裝:208-PQFP(28x28)
AGLN020V5-QNG68I 功能描述:IC FPGA NANO 1KB 20K 68-QFN RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOO nano 標準包裝:152 系列:IGLOO PLUS LAB/CLB數(shù):- 邏輯元件/單元數(shù):792 RAM 位總計:- 輸入/輸出數(shù):120 門數(shù):30000 電源電壓:1.14 V ~ 1.575 V 安裝類型:表面貼裝 工作溫度:-40°C ~ 85°C 封裝/外殼:289-TFBGA,CSBGA 供應商設備封裝:289-CSP(14x14)