參數(shù)資料
型號(hào): AD9215BRU-80
廠商: Analog Devices Inc
文件頁(yè)數(shù): 8/36頁(yè)
文件大?。?/td> 0K
描述: IC ADC 10BIT 80MSPS 3V 28-TSSOP
產(chǎn)品變化通告: Product Discontinuance 27/Oct/2011
設(shè)計(jì)資源: Very Low Jitter Encode (Sampling) Clocks for High Speed Analog-to-Digital Converters Using ADF4002 (CN0003)
Interfacing the High Frequency AD8331 to AD9215 (CN0096)
標(biāo)準(zhǔn)包裝: 50
位數(shù): 10
采樣率(每秒): 80M
數(shù)據(jù)接口: 并聯(lián)
轉(zhuǎn)換器數(shù)目: 1
功率耗散(最大): 104mW
電壓電源: 單電源
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 28-TSSOP(0.173",4.40mm 寬)
供應(yīng)商設(shè)備封裝: 28-TSSOP
包裝: 管件
輸入數(shù)目和類型: 2 個(gè)單端,單極;1 個(gè)差分,單極
配用: AD9215BCP-80EBZ-ND - BOARD EVAL FOR AD9215BCP-80
AD9215BCP-65EBZ-ND - BOARD EVAL FOR AD9215BCP-65
AD9215BCP-105EBZ-ND - BOARD EVAL FOR AD9215BCP-105
AD9215
Data Sheet
Rev. B | Page 16 of 36
Table 7. Reference Configuration Summary
Selected Mode
External SENSE
Connection
Internal Op Amp
Configuration
Resulting VREF
(V)
Resulting Differential Span
(V p-p)
Externally Supplied Reference
AVDD
N/A
2 × External Reference
Internal 0.5 V Reference
VREF
Voltage Follower (G = 1)
0.5
1.0
Programmed Variable
Reference
External Divider
Noninverting (1 < G < 2)
0.5 × (1 + R2/R1)
2 × VREF
Internally Programmed 1 V
Reference
AGND to 0.2 V
Internal Divider
1.0
2.0
Table 8. Digital Output Coding
Code
VIN+ VIN Input Span =
2 V p-p (V)
VIN+ VIN Input Span =
1 V p-p (V)
Digital Output Offset Binary
(D9D0)
Digital Output Twos
Complement (D9D0)
1023
1.000
0.500
11 1111 1111
01 1111 1111
512
0
10 0000 0000
00 0000 0000
511
0.00195
0.000978
01 1111 1111
11 1111 1111
0
1.00
0.5000
00 0000 0000
10 0000 0000
High speed, high resolution ADCs are sensitive to the quality
of the clock input. The degradation in SNR at a given full-scale
input frequency (fINPUT) due only to aperture jitter (tA) can be
calculated with the following equation
SNR Degradation = 20 × log10 [2 × π × fINPUT × tA]
In the equation, the rms aperture jitter, tA, represents the root-
sum square of all jitter sources, which include the clock input,
analog input signal, and ADC aperture jitter specification.
Undersampling applications are particularly sensitive to jitter.
The clock input should be treated as an analog signal in cases
where aperture jitter may affect the dynamic range of the
AD9215. Power supplies for clock drivers should be separated
from the ADC output driver supplies to avoid modulating the
clock signal with digital noise. Low jitter, crystal-controlled
oscillators make the best clock sources. If the clock is generated
from another type of source (by gating, dividing, or other
methods), it should be retimed by the original clock at the last
step.
Power Dissipation and Standby Mode
As shown in Figure 35, the power dissipated by the AD9215 is
proportional to its sample rate. The digital power dissipation
does not vary substantially between the three speed grades
because it is determined primarily by the strength of the digital
drivers and the load on each output bit. The maximum DRVDD
current can be calculated as
IDRVDD = VDRVDD × CLOAD × fCLOCK × N
where N is the number of output bits, 10 in the case of the
AD9215. This maximum current is for the condition of every
output bit switching on every clock cycle, which can only occur
for a full-scale square wave at the Nyquist frequency, fCLOCK/2. In
practice, the DRVDD current is established by the average
number of output bits switching, which are determined by the
encode rate and the characteristics of the analog input signal.
Digital power consumption can be minimized by reducing the
capacitive load presented to the output drivers. The data in Fig-
ure 35 was taken with a 5 pF load on each output driver.
02874-A-075
15
35
30
25
20
40
105
5
15
25
35
45
55
65
75
85
95
I AVDD
(mA)
I DRVDD
–1
1
3
5
7
9
11
13
15
fSAMPLE (MSPS)
AD9215-105 IAVDD
AD9215-65/80 IAVDD
IDRVDD
Figure 35. Supply Current vs. fSAMPLE for fIN = 10.3 MHz
The analog circuitry is optimally biased so that each speed
grade provides excellent performance while affording reduced
power consumption. Each speed grade dissipates a baseline
power at low sample rates that increases linearly with the clock
frequency.
By asserting the PDWN pin high, the AD9215 is placed in
standby mode. In this state, the ADC typically dissipates 1 mW
if the CLK and analog inputs are static. During standby, the
output drivers are placed in a high impedance state. Reasserting
the PDWN pin low returns the AD9215 into its normal opera-
tional mode.
In standby mode, low power dissipation is achieved by shutting
down the reference, reference buffer, and biasing networks. The
相關(guān)PDF資料
PDF描述
V150C15M150BG3 CONVERTER MOD DC/DC 15V 150W
AD9051BRS IC ADC 10BIT 60MSPS 28-SSOP
V150C15M150BG CONVERTER MOD DC/DC 15V 150W
AD7713AR IC ADC SIGNAL COND LC2MOS 24SOIC
MAX3082CPA+ IC TXRX RS485/RS422 10MBPS 8-DIP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD9215BRU-80EB 制造商:Analog Devices 功能描述:Evaluation Board For AD9215 3 V A/D Converter ,10-Bit, 65/80/105 MSPS 制造商:Analog Devices 功能描述:EVAL BD FOR AD9215 3V A/D CNVRTR ,10-BIT, 65/80/105 MSPS - Rail/Tube
AD9215BRURL7-105 制造商:AD 制造商全稱:Analog Devices 功能描述:10-Bit, 65/80/105 MSPS, 3V A/D Converter
AD9215BRURL7-65 制造商:Rochester Electronics LLC 功能描述: 制造商:Analog Devices 功能描述:
AD9215BRURL7-80 制造商:Analog Devices 功能描述:
AD9215BRUZ-105 功能描述:IC ADC 10BIT 105MSPS 3V 28-TSSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1 系列:microPOWER™ 位數(shù):8 采樣率(每秒):1M 數(shù)據(jù)接口:串行,SPI? 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):- 電壓電源:模擬和數(shù)字 工作溫度:-40°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:24-VFQFN 裸露焊盤(pán) 供應(yīng)商設(shè)備封裝:24-VQFN 裸露焊盤(pán)(4x4) 包裝:Digi-Reel® 輸入數(shù)目和類型:8 個(gè)單端,單極 產(chǎn)品目錄頁(yè)面:892 (CN2011-ZH PDF) 其它名稱:296-25851-6