
REV. E
–18–
AD7712
unipolar mode, the system calibration is performed between the
two endpoints of the transfer function; in the bipolar mode, it is
performed between midscale and positive full scale.
This two-step system calibration mode offers another feature.
After the sequence has been completed, additional offset or gain
calibrations can be performed by themselves to adjust the zero
reference point or the system gain. This is achieved by perform-
ing the first step of the system calibration sequence (by writing
0, 1, 0 to MD2, MD1, MD0). This will adjust the zero-scale or
offset point but will not change the slope factor from what was
set during a full system calibration sequence.
System calibration can also be used to remove any errors from
an antialiasing filter on the analog input. A simple R, C anti-
aliasing filter on the front end may introduce a gain error on the
analog input voltage but the system calibration can be used to
remove this error.
System Offset Calibration
System offset calibration is a variation of both the system cali-
bration and self-calibration. In this case, the zero-scale point
for the system is presented to the AIN input of the converter.
System offset calibration is initiated by writing 1, 0, 0 to MD2,
MD1, MD0. The system zero-scale coefficient is determined by
converting the voltage applied to the AIN input, while the full-
scale coefficient is determined from the span between this AIN
conversion and a conversion on V
REF
. The zero-scale point
should be applied to the AIN input for the duration of the cali-
bration sequence. This is a one-step calibration sequence with
DRDY
going low when the sequence is completed. In the uni-
polar mode, the system offset calibration is performed between
the two endpoints of the transfer function; in the bipolar mode,
it is performed between midscale and positive full scale.
Background Calibration
The AD7712 also offers a background calibration mode where
the part interleaves its calibration procedure with its normal
conversion sequence. In the background calibration mode, the
same voltages are used as the calibration points as are used in
the self-calibration mode, i.e., shorted inputs and V
REF
. The
background calibration mode is invoked by writing 1, 0, 1 to
MD2, MD1, MD0 of the control register. When invoked, the
background calibration mode reduces the output data rate of the
AD7712 by a factor of six while the –3 dB bandwidth remains
unchanged. Its advantage is that the part is continually perform-
ing calibration and automatically updating its calibration coeffi-
cients. As a result, the effects of temperature drift, supply
sensitivity and time drift on zero- and full-scale errors are auto-
matically removed. When the background calibration mode is
turned on, the part will remain in this mode until bits MD2,
MD1 and MD0 of the control register are changed. With back-
ground calibration mode on, the first result from the AD7712
will be incorrect as the full-scale calibration will not have been
performed. For a step change on the input, the second output
update will have settled to 100% of the final value.
Table VI summarizes the calibration modes and the calibration
points associated with them. It also gives the duration from
when the calibration is invoked to when valid data is available to
the user.
The AD7712 also provides the facility to write to the on-chip
calibration registers, and in this manner the span and offset for
the part can be adjusted by the user. The offset calibration regis-
ter contains a value which is subtracted from all conversion
results, while the full-scale calibration register contains a value
which is multiplied by all conversion results. The offset calibra-
tion coefficient is subtracted from the result prior to the multi-
plication by the full-scale coefficient. In the first three modes
outlined here, the
DRDY
line indicates that calibration is com-
plete by going low. If
DRDY
is low before (or goes low during)
the calibration command, it may take up to one modulator cycle
before
DRDY
goes high to indicate that calibration is in
progress. Therefore, the
DRDY
line should be ignored for up
to one modulator cycle after the last bit of the calibration com-
mand is written to the control register.
Self-Calibration
In the self-calibration mode with a unipolar input range, the
zero-scale point used in determining the calibration coefficients
is with both inputs shorted (i.e., AIN1(+) = AIN1(–) =
V
BIAS
for AIN1 and AIN2 = V
BIAS
for AIN2 ) and the full-scale
point is V
REF
. The zero-scale coefficient is determined by con-
verting an internal shorted inputs node. The full-scale coeffi-
cient is determined from the span between this shorted inputs
conversion and a conversion on an internal V
REF
node. The self-
calibration mode is invoked by writing the appropriate values (0,
0, 1) to the MD2, MD1 and MD0 bits of the control register. In
this calibration mode, the shorted inputs node is switched in to
the modulator first and a conversion is performed; the V
REF
node is then switched in, and another conversion is performed.
When the calibration sequence is complete, the calibration
coefficients updated and the filter resettled to the analog input
voltage, the
DRDY
output goes low. The self-calibration proce-
dure takes into account the selected gain on the PGA.
For bipolar input ranges in the self-calibrating mode, the
sequence is very similar to that just outlined. In this case, the
two points that the AD7712 calibrates are midscale (bipolar
zero) and positive full scale.
System Calibration
System calibration allows the AD7712 to compensate for system
gain and offset errors as well as its own internal errors. System
calibration performs the same slope factor calculations as self-
calibration but uses voltage values presented by the system to
the AIN inputs for the zero and full-scale points. System cali-
bration is a two-step process. The zero-scale point must be
presented to the converter first. It must be applied to the con-
verter before the calibration step is initiated and remain stable
until the step is complete. System calibration is initiated by
writing the appropriate values (0, 1, 0) to the MD2, MD1 and
MD0 bits of the control register. The
DRDY
output from the
device will signal when the step is complete by going low. After
the zero-scale point is calibrated, the full-scale point is applied
and the second step of the calibration process is initiated by
again writing the appropriate values (0, 1, 1) to MD2, MD1 and
MD0. Again the full-scale voltage must be set up before the
calibration is initiated, and it must remain stable throughout the
calibration step.
DRDY
goes low at the end of this second step
to indicate that the system calibration is complete. In the