AD5755
Data Sheet
Rev. C | Page 44 of 52
DC-to-DC Converter Compensation Capacitors
As the dc-to-dc converter operates in DCM, the uncompensated
transfer function is essentially a single-pole transfer function.
The pole frequency of the transfer function is determined by
the dc-to-dc converter’s output capacitance, input and output
voltage, and output load. The AD5755 uses an external capacitor
in conjunction with an internal 150 k resistor to compensate
the regulator loop. Alternatively, an external compensation
resistor can be used in series with the compensation capacitor,
by setting the DC-DC Comp bit in the dc-to-dc control register.
In this case, a ~50 k resistor is recommended. A description
of the advantages of this can be found in the
AICC SupplyFor typical applications, a 10 nF dc-to-dc compensation
capacitor is recommended.
DC-to-DC Converter Input and Output Capacitor
Selection
The output capacitor affects ripple voltage of the dc-to-dc
converter and indirectly limits the maximum slew rate at which
the channel output current can rise. The ripple voltage is caused
by a combination of the capacitance and equivalent series
resistance (ESR) of the capacitor. For the AD5755, a ceramic
capacitor of 4.7 F is recommended for typical applications.
Larger capacitors or paralleled capacitors improve the ripple at
the expense of reduced slew rate. Larger capacitors also impact
the AVCC supplies current requirements while slewing (see the
at the output of the dc-to-dc converter should be >3 F under
all operating conditions.
The input capacitor provides much of the dynamic current
required for the dc-to-dc converter and should be a low ESR
component. For the AD5755, a low ESR tantalum or ceramic
capacitor of 10 F is recommended for typical applications.
Ceramic capacitors must be chosen carefully because they can
exhibit a large sensitivity to dc bias voltages and temperature.
X5R or X7R dielectrics are preferred because these capacitors
remain stable over wider operating voltage and temperature
ranges. Care must be taken if selecting a tantalum capacitor to
ensure a low ESR value.
AICC SUPPLY REQUIREMENTS—STATIC
The dc-to-dc converter is designed to supply a VBOOST voltage of
VBOOST = IOUT × RLOAD + Headroom
(2)
See
Figure 52 for a plot of headroom supplied vs. output
voltage. This means that, for a fixed load and output voltage,
the output current of the dc-to-dc converter can be calculated
by the following formula:
CC
V
BOOST
OUT
CC
AV
V
I
AV
Efficiency
Out
Power
AI
BOOST
×
=
×
=
η
(3)
where:
IOUT is the output current from IOUT_x in amps.
ηV
BOOST is the efficiency at VBOOST_x as a fraction (see Figure 54 AICC SUPPLY REQUIREMENTS—SLEWING
The AICC current requirement while slewing is greater than in
static operation because the output power increases to charge
the output capacitance of the dc-to-dc converter. This transient
current can be quite large (see
Figure 80), although the methods
can reduce the requirements on the AVCC supply. If not enough
AICC current can be provided, the AVCC voltage drops. Due to
this AVCC drop, the AICC current required to slew increases
further. This means that the voltage at AVCC drops further (see
Equation 3) and the VBOOST voltage, and thus the output voltage,
may never reach its intended value. Because this AVCC voltage is
common to all channels, this may also affect other channels.
0
5
10
15
20
25
30
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0
0.5
1.0
1.5
2.0
2.5
I O
UT
_
x
CURRE
NT
(
mA
)/
V
B
OOS
T
_
x
VO
LT
A
G
E
(V)
AI
CC
CURRE
NT
(
A)
TIME (ms)
AICC
IOUT
VBOOST
0mA TO 24mA RANGE
1k LOAD
fSW = 410kHz
INDUCTOR = 10H (XAL4040-103)
TA = 25°C
07304-
184
Figure 80. AICC Current vs. Time for 24 mA Step Through 1 k Load
with Internal Compensation Resistor
Reducing AICC Current Requirements
There are two main methods that can be used to reduce the
AICC current requirements. One method is to add an external
compensation resistor, and the other is to use slew rate control.
Both of these methods can be used in conjunction.
A compensation resistor can be placed at the COMPDCDC_x pin
in series with the 10 nF compensation capacitor. A 51 k exter-
nal compensation resistor is recommended. This compensation
increases the slew time of the current output but eases the AICC
transient current requirements. Figure 81 shows a plot of AICC current for a 24 mA step through a 1 k load when using a
51 k compensation resistor. This method eases the current
requirements through smaller loads even further, as shown in