參數(shù)資料
型號: AD5372BSTZ-REEL
廠商: Analog Devices Inc
文件頁數(shù): 11/29頁
文件大?。?/td> 0K
描述: IC DAC 16BIT 32CH SER 64-LQFP
產(chǎn)品培訓(xùn)模塊: Data Converter Fundamentals
DAC Architectures
標(biāo)準(zhǔn)包裝: 1,500
設(shè)置時間: 20µs
位數(shù): 16
數(shù)據(jù)接口: 串行
轉(zhuǎn)換器數(shù)目: 32
電壓電源: 雙 ±
功率耗散(最大): 520mW
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 64-LQFP
供應(yīng)商設(shè)備封裝: 64-LQFP(10x10)
包裝: 帶卷 (TR)
輸出數(shù)目和類型: 32 電壓,單極;32 電壓,雙極
采樣率(每秒): *
配用: EVAL-AD5372EBZ-ND - BOARD EVAL FOR AD5372
AD5372/AD5373
Rev. C | Page 18 of 28
The required reference levels can be calculated as follows:
1.
Identify the nominal output range on VOUT.
2.
Identify the maximum offset span and the maximum gain
required on the full output signal range.
3.
Calculate the new maximum output range on VOUT,
including the expected maximum offset and gain errors.
4.
Choose the new required VOUTMAX and VOUTMIN,
keeping the VOUT limits centered on the nominal values.
Note that VDD and VSS must provide sufficient headroom.
5.
Calculate the value of VREF as follows:
VREF = (VOUTMAX – VOUTMIN)/4
Reference Selection Example
If
Nominal output range = 12 V (4 V to +8 V)
Zero-scale error = ±70 mV
Gain error = ±3%, and
SIGGNDx = AGND = 0 V
Then
Gain error = ±3%
=> Maximum positive gain error = 3%
=> Output range including gain error = 12 + 0.03(12) = 12.36 V
Zero-scale error = ±70 mV
=> Maximum offset error span = 2(70 mV) = 0.14 V
=> Output range including gain error and zero-scale error =
12.36 V + 0.14 V = 12.5 V
VREF calculation
Actual output range = 12.5 V, that is, 4.25 V to +8.25 V;
VREF = (8.25 V + 4.25 V)/4 = 3.125 V
If the solution yields an inconvenient reference level, the user
can adopt one of the following approaches:
Use a resistor divider to divide down a convenient, higher
reference level to the required level.
Select a convenient reference level above VREF and modify
the gain and offset registers to digitally downsize the reference.
In this way, the user can use almost any convenient reference
level but can reduce the performance by overcompaction of
the transfer function.
Use a combination of these two approaches.
CALIBRATION
The user can perform a system calibration on the AD5372/
AD5373 to reduce gain and offset errors to below 1 LSB. This
reduction is achieved by calculating new values for the M and C
registers and reprogramming them.
The M and C registers should not be programmed until both
the zero-scale and full-scale errors are calculated.
Reducing Zero-Scale Error
Zero-scale error can be reduced as follows:
1.
Set the output to the lowest possible value.
2.
Measure the actual output voltage and compare it to the
required value. This gives the zero-scale error.
3.
Calculate the number of LSBs equivalent to the error and
add this number to the default value of the C register. Note
that only negative zero-scale error can be reduced.
Reducing Full-Scale Error
Full-scale error can be reduced as follows:
1.
Measure the zero-scale error.
2.
Set the output to the highest possible value.
3.
Measure the actual output voltage and compare it to the
required value. Add this error to the zero-scale error. This
is the span error, which includes the full-scale error.
4.
Calculate the number of LSBs equivalent to the span error
and subtract this number from the default value of the M
register. Note that only positive full-scale error can be
reduced.
AD5372 Calibration Example
This example assumes that a 4 V to +8 V output is required.
The DAC output is set to 4 V but is measured at 4.03 V. This
gives a zero-scale error of 30 mV.
1 LSB = 12 V/65,536 = 183.105 μV
30 mV = 164 LSBs
The full-scale error can now be calculated. The output is set to
8 V and a value of 8.02 V is measured. This gives a full-scale
error of +20 mV and a span error of +20 mV – (–30 mV) =
+50 mV.
50 mV = 273 LSBs
The errors can now be removed as follows:
1.
Add 164 LSBs to the default C register value:
(32,768 + 164) = 32,932
2.
Subtract 273 LSBs from the default M register value:
(65,535 273) = 65,262
3.
Program the M register to 65,262; program the C register
to 32,932.
相關(guān)PDF資料
PDF描述
VE-JTJ-MW-S CONVERTER MOD DC/DC 36V 100W
VE-JTH-MW-S CONVERTER MOD DC/DC 52V 100W
AD5382BSTZ-5 IC DAC 14BIT 32CH 5V 100-LQFP
VE-JTF-MW-S CONVERTER MOD DC/DC 72V 100W
AD7228BQ IC DAC 8BIT OCTAL W/AMP 24-CDIP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD5373BCPZ 功能描述:數(shù)模轉(zhuǎn)換器- DAC 32-CH 14-bit Serial bipolar DAC I.C. RoHS:否 制造商:Texas Instruments 轉(zhuǎn)換器數(shù)量:1 DAC 輸出端數(shù)量:1 轉(zhuǎn)換速率:2 MSPs 分辨率:16 bit 接口類型:QSPI, SPI, Serial (3-Wire, Microwire) 穩(wěn)定時間:1 us 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:SOIC-14 封裝:Tube
AD5373BCPZ-RL7 功能描述:14 Bit Digital to Analog Converter 32 56-LFCSP-VQ (8x8) 制造商:analog devices inc. 系列:- 包裝:帶卷(TR) 零件狀態(tài):上次購買時間 位數(shù):14 數(shù)模轉(zhuǎn)換器數(shù):32 建立時間:30μs 輸出類型:Voltage - Buffered 差分輸出:無 數(shù)據(jù)接口:SPI,DSP 參考類型:外部 電壓 - 電源,模擬:9 V ~ 16.5 V,-4.5 V ~ 16.5 V 電壓 - 電源,數(shù)字:2.5 V ~ 5.5 V INL/DNL(LSB):±1(最大),±1(最大) 架構(gòu):電阻串 DAC 工作溫度:-40°C ~ 85°C 封裝/外殼:56-VFQFN 裸露焊盤,CSP 供應(yīng)商器件封裝:56-LFCSP-VQ(8x8) 標(biāo)準(zhǔn)包裝:1
AD5373BSTZ 功能描述:IC DAC 14BIT 32CH SER 64-LQFP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1,000 系列:- 設(shè)置時間:1µs 位數(shù):8 數(shù)據(jù)接口:串行 轉(zhuǎn)換器數(shù)目:8 電壓電源:雙 ± 功率耗散(最大):941mW 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:24-SOIC W 包裝:帶卷 (TR) 輸出數(shù)目和類型:8 電壓,單極 采樣率(每秒):*
AD5373BSTZ-REEL 功能描述:IC DAC 14BIT 32CH SER 64-LQFP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 數(shù)模轉(zhuǎn)換器 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1,000 系列:- 設(shè)置時間:1µs 位數(shù):8 數(shù)據(jù)接口:串行 轉(zhuǎn)換器數(shù)目:8 電壓電源:雙 ± 功率耗散(最大):941mW 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:24-SOIC W 包裝:帶卷 (TR) 輸出數(shù)目和類型:8 電壓,單極 采樣率(每秒):*
AD5378 制造商:AD 制造商全稱:Analog Devices 功能描述:32-Channel, 14-Bit, Parallel and Serial Input, Bipolar Voltage Output DAC