開關(guān)二極管in4148-in4454

品牌 國產(chǎn) 型號 in4148-in4454
應(yīng)用范圍 整流 結(jié)構(gòu) 合金型
材料 砷(as) 封裝形式 功率型
封裝材料 塑料封裝 功率特性 中功率
頻率特性 超高頻 發(fā)光顏色 負(fù)阻
led封裝 無色散射封裝(w) 出光面特征 三角形
發(fā)光強度角分布 散射型

簡介  肖特基二極管是以其發(fā)明人肖特基博士(schottky)命名的,sbd是肖特基勢壘二極管(schottkybarrierdiode,縮寫成sbd)的簡稱。sbd不是利用p型半導(dǎo)體與n型半導(dǎo)體接觸形成pn結(jié)原理的,而是利用金屬與半導(dǎo)體接觸形成的金屬-半導(dǎo)體結(jié)原理的。因此,sbd也稱為金屬-半導(dǎo)體(接觸)二極管或表面勢壘二極管,它是一種熱載流子二極管。

  是近年來問世的低功耗、大電流、超高速半導(dǎo)體器件。其反向恢復(fù)時間極短(可以小到幾納秒),正向?qū)▔航祪H0.4v左右,而整流電流卻可達到幾千毫安。這些優(yōu)良特性是快恢復(fù)二極管所無法比擬的。中、小功率肖特基整流二極管大多采用封裝形式。

 
原理

  肖特基二極管是貴金屬(金、銀、鋁、鉑等)a為正極,以n型半導(dǎo)體b為負(fù)極,利用二者接觸面上形成的勢壘具有整流特性而制成的金屬-半導(dǎo)體器件。因為n型半導(dǎo)體中存在著的電子,貴金屬中僅有極少量的自由電子,所以電子便從濃度高的b中向濃度低的a中擴散。顯然,金屬a中沒有空穴,也就不存在空穴自a向b的擴散運動。隨著電子不斷從b擴散到a,b表面電子濃度逐漸降低,表面電中性被破壞,于是就形成勢壘,其電場方向為b→a。但在該電場作用之下,a中的電子也會產(chǎn)生從a→b的漂移運動,從而消弱了由于擴散運動而形成的電場。當(dāng)建立起一定寬度的空間電荷區(qū)后,電場引起的電子漂移運動和濃度不同引起的電子擴散運動達到相對的平衡,便形成了肖特基勢壘。

  典型的肖特基整流管的內(nèi)部電路結(jié)構(gòu)是以n型半導(dǎo)體為基片,在上面形成用砷作摻雜劑的n-外延層。陽極使用鉬或鋁等材料制成阻檔層。用二氧化硅(sio2)來消除邊緣區(qū)域的電場,提高管子的耐壓值。n型基片具有很小的通態(tài)電阻,其摻雜濃度較h-層要高100%倍。在基片下邊形成n+陰極層,其作用是減小陰極的接觸電阻。通過調(diào)整結(jié)構(gòu)參數(shù),n型基片和陽極金屬之間便形成肖特基勢壘,如圖所示。當(dāng)在肖特基勢壘兩端加上正向偏壓(陽極金屬接電源正極,n型基片接電源負(fù)極)時,肖特基勢壘層變窄,其內(nèi)阻變??;反之,若在肖特基勢壘兩端加上反向偏壓時,肖特基勢壘層則變寬,其內(nèi)阻變大。

  綜上所述,肖特基整流管的結(jié)構(gòu)原理與pn結(jié)整流管有很大的區(qū)別通常將pn結(jié)整流管稱作結(jié)整流管,而把金屬-半導(dǎo)管整流管叫作肖特基整流管,近年來,采用硅平面工藝制造的鋁硅肖特基二極管也已問世,這不僅可節(jié)省貴金屬,大幅度降低成本,還改善了參數(shù)的一致性。

 
優(yōu)點

  sbd具有開關(guān)頻率高和正向壓降低等優(yōu)點,但其反向擊穿電壓比較低,大多不高于60v,最高僅約100v,以致于限制了其應(yīng)用范圍。像在開關(guān)電源(smps)和功率因數(shù)校正(pfc)電路中功率開關(guān)器件的續(xù)流二極管、變壓器次級用100v以上的高頻整流二極管、rcd緩沖器電路中用600v~1.2kv的高速二極管以及pfc升壓用600v二極管等,只有使用快速恢復(fù)外延二極管(fred)和超快速恢復(fù)二極管(ufrd)。目前ufrd的反向恢復(fù)時間trr也在20ns以上,根本不能滿足像空間站等領(lǐng)域用1mhz~3mhz的smps需要。即使是硬開關(guān)為100khz的smps,由于ufrd的導(dǎo)通損耗和開關(guān)損耗均較大,殼溫很高,需用較大的散熱器,從而使smps體積和重量增加,不符合小型化和輕薄化的發(fā)展趨勢。因此,發(fā)展100v以上的高壓sbd,一直是人們研究的課題和關(guān)注的熱點。近幾年,sbd已取得了突破性的進展,150v和200v的高壓sbd已經(jīng)上市,使用新型材料的超過1kv的sbd也研制成功,從而為其應(yīng)用注入了新的生機與活力。

 
結(jié)構(gòu)

  新型高壓sbd的結(jié)構(gòu)和材料與傳統(tǒng)sbd是有區(qū)別的。傳統(tǒng)sbd是通過金屬與半導(dǎo)體接觸而構(gòu)成。金屬材料可選用鋁、金、鉬、鎳和鈦等,半導(dǎo)體通常為硅(si)或砷化鎵(gaas)。由于電子比空穴遷移率大,為獲得良好的頻率特性,故選用n型半導(dǎo)體材料作為基片。為了減小sbd的結(jié)電容,提高反向擊穿電壓,同時又不使串聯(lián)電阻過大,通常是在n+襯底上外延一高阻n-薄層。其結(jié)構(gòu)示圖如圖1(a),圖形符號和等效電路分別如圖1(b)和圖1(c)所示。在圖1(c)中,cp是管殼并聯(lián)電容,ls是引線電感,rs是包括半導(dǎo)體體電阻和引線電阻在內(nèi)的串聯(lián)電阻,cj和rj分別為結(jié)電容和結(jié)電阻(均為偏流、偏壓的函數(shù))。

  大家知道,金屬導(dǎo)體內(nèi)部有的導(dǎo)電電子。當(dāng)金屬與半導(dǎo)體接觸(二者距離只有原子大小的數(shù)量級)時,金屬的費米能級低于半導(dǎo)體的費米能級。在金屬內(nèi)部和半導(dǎo)體導(dǎo)帶相對應(yīng)的分能級上,電子密度小于半導(dǎo)體導(dǎo)帶的電子密度。因此,在二者接觸后,電子會從半導(dǎo)體向金屬擴散,從而使金屬帶上負(fù)電荷,半導(dǎo)體帶正電荷。由于金屬是理想的導(dǎo)體,負(fù)電荷只分布在表面為原子大小的一個薄層之內(nèi)。而對于n型半導(dǎo)體來說,失去電子的施主雜質(zhì)原子成為正離子,則分布在較大的厚度之中。電子從半導(dǎo)體向金屬擴散運動的結(jié)果,形成空間電荷區(qū)、自建電場和勢壘,并且耗盡層只在n型半導(dǎo)體一邊(勢壘區(qū)全部落在半導(dǎo)體一側(cè))。勢壘區(qū)中自建電場方向由n型區(qū)指向金屬,隨熱電子發(fā)射自建場增加,與擴散電流方向相反的漂移電流增大,最終達到動態(tài)平衡,在金屬與半導(dǎo)體之間形成一個接觸勢壘,這就是肖特基勢壘。

  在外加電壓為零時,電子的擴散電流與反向的漂移電流相等,達到動態(tài)平衡。在加正向偏壓(即金屬加正電壓,半導(dǎo)體加負(fù)電壓)時,自建場削弱,半導(dǎo)體一側(cè)勢壘降低,于是形成從金屬到半導(dǎo)體的正向電流。當(dāng)加反向偏壓時,自建場增強,勢壘高度增加,形成由半導(dǎo)體到金屬的較小反向電流。因此,sbd與pn結(jié)二極管一樣,是一種具有單向?qū)щ娦缘姆蔷€性器件。

 
特點

  sbd的主要優(yōu)點包括兩個方面:

  1)由于肖特基勢壘高度低于pn結(jié)勢壘高度,故其正向?qū)ㄩT限電壓和正向壓降都比pn結(jié)二極管低(約低0.2v)。

  2)由于sbd是一種多數(shù)載流子導(dǎo)電器件,不存在少數(shù)載流子壽命和反向恢復(fù)問題。sbd的反向恢復(fù)時間只是肖特基勢壘電容的充、放電時間,完全不同于pn結(jié)二極管的反向恢復(fù)時間。由于sbd的反向恢復(fù)電荷非常少,故開關(guān)速度非???,開關(guān)損耗也特別小,尤其適合于高頻應(yīng)用。

  但是,由于sbd的反向勢壘較薄,并且在其表面極易發(fā)生擊穿,所以反向擊穿電壓比較低。由于sbd比pn結(jié)二極管更容易受熱擊穿,反向漏電流比pn結(jié)二極管大。

 
應(yīng)用

  sbd的結(jié)構(gòu)及特點使其適合于在低壓、大電流輸出場合用作高頻整流,在非常高的頻率下(如x波段、c波段、s波段和ku波段)用于檢波和混頻,在高速邏輯電路中用作箝位。在ic中也常使用sbd,像sbdttl集成電路早已成為ttl電路的主流,在高速計算機中被廣泛采用。

  除了普通pn結(jié)二極管的特性參數(shù)之外,用于檢波和混頻的sbd電氣參數(shù)還包括中頻阻抗(指sbd施加額定本振功率時對指定中頻所呈現(xiàn)的阻抗,一般在200ω~600ω之間)、電壓駐波比(一般≤2)和噪聲系數(shù)等。

 
其它

1、高壓sbd

  以來,在輸出12v~24v的smps中,次級邊的高頻整流器只有選用100v的sbd或200v的fre

  d。在輸出24v~48v的smps中,只有選用200v~400v的fred。設(shè)計者迫切需要介于100v~200v之間的150vsbd和用于48v輸出smps用的200vsbd。近兩年來,美國ir公司和apt公司以及st公司瞄準(zhǔn)高壓sbd的巨大商機,先后開發(fā)出150v和200v的sbd。這種高壓sbd比原低壓sbd在結(jié)構(gòu)上增加了pn結(jié)工藝,形成肖特基勢壘與pn結(jié)相結(jié)合的混合結(jié)構(gòu),如圖2所示。采用這種結(jié)構(gòu)的sbd,擊穿電壓由pn結(jié)承受。通過調(diào)控n-區(qū)電阻率、外延層厚度和p+區(qū)的擴散深度,使反偏時的擊穿電壓突破了100v這個不可逾越的障礙,達到150v和200v。在正向偏置時,高壓sbd的pn結(jié)的導(dǎo)通門限電壓為0.6v,而肖特基勢壘的結(jié)電壓僅約0.3v,故正向電流幾乎全部由肖特基勢壘供給。

  為解決sbd在高溫下易產(chǎn)生由金屬-半導(dǎo)體的整流接觸變?yōu)闅W姆接觸而失去導(dǎo)電性這一肖特基勢壘的退化問題,apt公司通過退火處理,形成金屬-金屬硅化物-硅勢壘,從而提高了肖特基勢壘的高溫性能與可靠性。

  st公司研制的150vsbd,是專門為在輸出12v~24v的smps中替代200v的高頻整流fred而設(shè)計的。像額定電流為2×8a的stps16150ct型sbd,起始電壓比業(yè)界居先進水平的200v/2×8afred(如strr162ct)低0.07v(典型值為0.47v),導(dǎo)通電阻rd(125℃)低6.5mω(典型值為40mω),導(dǎo)通損耗低0.18w(典型值為1.14w)。

  apt公司推出的apt100s20b、apt100s20lct和apt2×10is20型200vsbd,正向平均電流if(av)=100a,正向壓降vf≤0.95v,雪崩能量eas=100mj。eas的表達式為

  eas=vrrm×ias×td

  在式(1)中,200vsbd的vrrm=200v,ias為雪崩電流,并且ias≈if=100a,eas=100mj。在ias下不會燒毀的維持時間:td=eas/(vrrm×ias)=1000mj/(200v×100a)=5μs。也就是說,sbd在出現(xiàn)雪崩之后ias=100a時,可保證在5μs之內(nèi)不會損壞器件。eas是檢驗肖特基勢壘可靠性的重要參量200v/100a的sbd在48v輸出的通信smps中可替代等額定值的fred,使整流部分的損耗降低10%~15%。由于sbd的超快軟恢復(fù)特性及其雪崩能量,提高了系統(tǒng)工作頻率和可靠性,emi也得到顯著的改善。

  業(yè)界人士認(rèn)為,即使不采用新型半導(dǎo)體材料,通過工藝和設(shè)計創(chuàng)新,sbd的耐壓有望突破200v,但一般不會超過600v。

2、sic高壓sbd

  由于si和gaas的勢壘高度和臨界電場比寬帶半導(dǎo)體材料低,用其的sbd擊穿電壓較低,反向漏電流較大。碳化硅(sic)材料的禁帶寬度大(2.2ev~3.2ev),臨界擊穿電場高(2v/cm~4×106v/cm),飽合速度快(2×107cm/s),熱導(dǎo)率高為4.9w/(cm·k),抗化學(xué)腐蝕性強,硬度大,材料制備和工藝也比較成熟,是目前高耐壓、低正向壓降和高開關(guān)速度sbd的比較理想的新型材料。

  1999年,美國purdue大學(xué)在美國海軍資助的muri項目中,研制成功4.9kv的sic功率sbd,使sbd在耐壓方面取得了根本性的突破。

  sbd的正向壓降和反向漏電流直接影響sbd整流器的功率損耗,關(guān)系到系統(tǒng)效率。低正向壓降要求有低的肖特基勢壘高度,而較高的反向擊穿電壓要求有盡可能高的勢壘高度,這是相矛盾的。因此,對勢壘金屬必須折衷考慮,故對其選擇顯得十分重要。對n型sic來說,ni和ti是比較理想的肖特基勢壘金屬。由于ni/sic的勢壘高度高于ti/sic,故前者有更低的反向漏電流,而后者的正向壓降較小。為了獲得正向壓降低和反向漏電流小的sicsbd,采用ni接觸與ti接觸相結(jié)合、高/低勢壘雙金屬溝槽(dmt)結(jié)構(gòu)的sicsbd設(shè)計方案是可行的。采用這種結(jié)構(gòu)的sicsbd,反向特性與ni肖特基整流器相當(dāng),在300v的反向偏壓下的反向漏電流比平面型ti肖特基整流器小75倍,而正向特性類似于nisbd。采用帶保護環(huán)的6h-sicsbd,擊穿電壓達550v。

  據(jù)報道,c.m.zetterling等人采用6hsic襯底外延10μm的n型層,再用離子注入形成一系列平行p+條,頂層勢壘金屬選用ti,這種結(jié)構(gòu)與圖2相類似的結(jié)勢壘肖特基(junctionbarrierschottky,縮寫為jbs)器件,正向特性與ti肖特基勢壘相同,反向漏電流處于pn結(jié)和ti肖特基勢壘之間,通態(tài)電阻密度為20mω·cm2,阻斷電壓達1.1kv,在200v反向偏壓下的漏電流密度為10μa/cm2。此外,r·rayhunathon報道了關(guān)于p型4hsicsbd、6hsicsbd的研制成果。這種以ti作為金屬勢壘的p型4hsicsbd和6hsicsbd,反向擊穿電壓分別達600v和540v,在100v反向偏壓下的漏電流密度小于0.1μa/cm2(25℃)。

  sic是功率半導(dǎo)體器件比較理想的材料,2000年5月4日,美國cree公司和日本關(guān)西電力公司聯(lián)合宣布研制成功12.3kv的sic功率二極管,其正向壓降vf在100a/cm2電流密度下為4.9v。這充分顯示了sic材料功率二極管的巨大威力。

  在sbd方面,采用sic材料和jbs結(jié)構(gòu)的器件具有較大的發(fā)展?jié)摿?。在高壓功率二極管領(lǐng)域,sbd肯定會占有一席之地。

  ---------------------------

  肖特基二極管的工作原理

  1.結(jié)構(gòu)原理

  肖特基二極管是貴金屬(金、銀、鋁、鉑等)a為正極,以n型半導(dǎo)體b為負(fù)極,利用二者接觸面上形成的勢壘具有整流特性而制成的多屬-半導(dǎo)體器件。因為n型半導(dǎo)體中存在著的電子,貴金屬中僅有極少量的自由電子,所以電子便從濃度高的b中向濃度低的a中擴散。顯然,金屬a中沒有空穴,也就不存在空穴自a向b的擴散運動。隨著電子不斷從b擴散到a,b表面電子濃度表面逐漸降輕工業(yè)部,表面電中性被破壞,于是就形成勢壘,其電場方向為b→a。但在該電場作用之下,a中的電子也會產(chǎn)生從a→b的漂移運動,從而消弱了由于擴散運動而形成的電場。當(dāng)建立起一定寬度的空間電荷區(qū)后,電場引起的電子漂移運動和濃度不同引起的電子擴散運動達到相對的平衡,便形成了肖特基勢壘。

  典型的肖特基整流管的內(nèi)部電路結(jié)構(gòu)如圖1所示。它是以n型半導(dǎo)體為基片,在上面形成用砷作摻雜劑的n-外延層。陽極(阻檔層)金屬材料是鉬。二氧化硅(sio2)用來消除邊緣區(qū)域的電場,提高管子的耐壓值。n型基片具有很小的通態(tài)電阻,其摻雜濃度較h-層要高100%倍。在基片下邊形成n+陰極層,其作用是減小陰極的接觸電阻。通過調(diào)整結(jié)構(gòu)參數(shù),可在基片與陽極金屬之間形成合適的肖特基勢壘,當(dāng)加上正偏壓e時,金屬a和n型基片b分別接電源的正、負(fù)極,此時勢壘寬度wo變窄。加負(fù)偏壓-e時,勢壘寬度就增加,見圖2。

  綜上所述,肖特基整流管的結(jié)構(gòu)原理與pn結(jié)整流管有很大的區(qū)別通常將pn結(jié)整流管稱作結(jié)整流管,而把金屬-半導(dǎo)管整流管叫作肖特基整流管,近年來,采用硅平面工藝制造的鋁硅肖特基二極管也已問世,這不僅可節(jié)省貴金屬,大幅度降低成本,還改善了參數(shù)的一致性。

  肖特基整流管僅用一種載流子(電子)輸送電荷,在勢壘外側(cè)無過剩少數(shù)載流子的積累,因此,不存在電荷儲存問題(qrr→0),使開關(guān)特性獲得時顯改善。其反向恢復(fù)時間已能縮短到10ns以內(nèi)。但它的反向耐壓值較低,一般不超過去時100v。因此適宜在低壓、大電流情況下工作。利用其低壓降這特點,能提高低壓、大電流整流(或續(xù)流)電路的效率 。